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Abstract 

The timely identification of mental disorders in adolescents is a global public health 

challenge. Single factor is difficult to detect the abnormality due to its complex and 

subtle nature. Additionally, the generalized multimodal Computer-Aided Screening 

(CAS) systems with interactive robots for adolescent mental disorders are not 

available. Here, we design an android application with mini-games and chat recording 

deployed in a portable robot to screen 3,783 middle school students and construct the 

multimodal screening dataset, including facial images, physiological signs, voice 

recordings, and textual transcripts. We develop a model called GAME (Generalized 

Model with Attention and Multimodal EmbraceNet) with novel attention mechanism 

that integrates cross-modal features into the model. GAME evaluates adolescent mental 

conditions with high accuracy (73.34% – 92.77%) and F1-Score (71.32% – 

91.06%). We find each modality contributes dynamically to the mental disorders 

screening and comorbidities among various mental disorders, indicating the feasibility 

of explainable model. This study provides a system capable of acquiring multimodal 

information and constructs a generalized multimodal integration algorithm with novel 

attention mechanisms for the early screening of adolescent mental disorders. 

 

Keywords: Adolescent mental disorder, Mental health screening, Multimodal learning, 

Human-Computer interaction, Computer-aided screening. 

 

 

Main 

Adolescence is a crucial period of life development during which major psychosocial 

                                                   
 



adjustment takes place1,2. A large percentage of mental health disorders that progress 

into adulthood exhibit symptoms at a young age3,4, indicating that adolescent mental 

health issues could degenerate into worse later-life illnesses. Around 13% of 

adolescents aged 10–19 in the world are diagnosed with different types of mental illness, 

of which 80 million adolescents aged 10–14 and 86 million adolescents aged 15–19 are 

deeply affected by mental disorders5,6. Especially, ~80% adolescents are unable to 

receive precise and professional psychological counseling when they demand mental 

health services7 and ~50% adolescents with mental disorders have access to 

psychotherapy8. Traditional screening methods for mental disorders include 

questionnaires and interviews9, where the results rely on patients’ self-reports and 

psychiatrists’ observations10,11. However, these methods are inherently susceptible to 

subjective bias. Furthermore, barriers like stigma in disclosing mental illness or 

negative attitudes towards professionals12 lead to inaccurate psychological assessments 

and a vicious cycle of disease deterioration. To address these limitations, interactive 

robots providing an enjoyable and acceptable interface with less defensive altitude and 

hostility offer a promising avenue for unconscious screening13. The humanoid robot is 

more accurate at detecting pediatric mental health problems than parental or child self-

reporting14. Therefore, imperceptible and interactive screening robot with 

corresponding algorithm for accurate and opportune screening to adolescent mental 

disorders can support healthcare agencies and ameliorate the social burden15,16.  

Here, we develop a humanoid robot equipped with well-designed emotional stimuli 

that facilitates the acquisition of the Multimodal Adolescent Psychological Screening 

(MAPS) dataset (age 12–15), including facial images, physiological indicators, audio 

recordings, and textual transcripts (Fig. 1). Acquired multimodal dataset are analyzed 

with statistical model to minimize the distance between prediction and ground-truth 

provided by screening questionnaires. The Mental Health Inventory of Middle School 

Students (MMHI-60)17,18 is a screening questionnaire specially designed to assess 

Chinese adolescents’ mental health and has exhibited high specificity and sensitivity in 

screening 10 different types of mental disorders (Supplementary Methods). We 

maintain MMHI-60 questionnaire to screen 10 types of mental disorders with additional 

screening results suggested by experienced psychologists for suicidal tendency. Thus, 

a total of 12 psychological conditions are labeled as ground truth for individual subject 

in the dataset, including: (1) depression, (2) interpersonal sensitivity, (3) anxiety, (4) 

obsessive-compulsive tendencies, (5) paranoid ideation, (6) hostility, (7) academic 

stress, (8) maladaptation, (9) emotional disturbance, (10) psychological imbalance, (11) 

suicidal tendency, and (12) overall mental health status19. 

Robotic platforms with human-computer interaction have been utilized for 

intervention in adolescent mental health20-22. However, existing systems lack a 

computer-aided screening (CAS) algorithm for psychometrics, and the CAS approach 

has shown promise in the diagnosis of mental disorders in adolescents23,24. Models that 

can process different types of input data (i.e., physical activity, sociability, device usage 

patterns, etc.) collected from various sensors25,26 are utilized to recognize specific 

mental disorders including depression, anxiety, and stress27-32. However, the current 

CAS models employing single-modal feature encounter limitations in constructing a 



comprehensive representation of the latent multimodal feature space33, which weakens 

their performance. Multimodal CAS models have been used to predict psychological 

disorders and mental states by feature importance ranking, feature selection, and feature 

concatenation strategies34-37. Nevertheless, the screening of specific psychiatric 

disorders and the lack of interpretability of these models have hindered the adoption of 

CAS models in clinical applications. Limited exploration exists on whether a 

generalized model with interpretability could accurately screen adolescents' mental 

disorders. Therefore, achieving both generalization and interpretability in the CAS 

system remains a challenge for clinical utility. 

 

 
Figure 1. MAPS data acquisition and database construction. a, The flowchart of data acquisition. 

A humanoid robot with a customer-designed Android application that can interact with participants 

is used for data collection. The data collection procedure has three consecutive sections: 

psychological screening, emotional stimuli games, and questions-and-answers. The mental health 

inventory is designed by psychological expert as labels of ground truth. Using remote photo-

plethysmography (rPPG) and available processing algorithm, key frames (i.e., images with clear 

and unmasked face) and physiological indicators are extracted from videos captured during the 



games and questions-and-answers sections. The responses in the questions-and-answers sections are 

recorded and converted into text using the speech recognition technique of Iflyrec 

(https://www.iflyrec.com), supplied by iFlytek. b, the sample distributions for 11 types of screened 

mental disorders and overall mental health status. The ratios depict the imbalance of the MAPS 

dataset, and the positive samples labeled as ‘Overall mental health status’ represent the abnormal 

adolescents. 

 

Hence, we propose GAME (Generalized model with Attention and Multimodal 

EmbraceNet), a generalized model based on distance-weighted attention mechanisms 

and multimodal feature fusion in the EmbraceNet backbone network38 (Fig. 2) for 

adolescent mental disorders screening. GAME extracts eight single-modal features 

named Expression, Expression nuance, and Eye movement from face images; 

Physiological signs; MFCC and Wav2vec from audio recordings; PERT and RoBERTa 

from textual transcripts, respectively. Inspired by psychologists’ diagnosing strategy 

through multifaceted response from adolescents in structured diagnostic and screening 

interview39, we propose a novel attention mechanism for multi-scale feature  to 

integrate inter-model correlation weights and eight single-modal features.  Cross-

modal features named Relation graph and Attention extract deeper information and 

alleviate the interference of noisy features. Hyper-emotion theory40,41 indicates that 

adolescents suffered from mental disorders have abnormal multimodal emotional and 

behavioral responses to the same interactive stimuli in contrast to healthy subjects. 

GAME, guided by the hyper-emotion theory, accurately predicts overall mental health 

status and identifies 11 types of adolescent mental disorders based on multimodal 

responses. We use GAME to predict comorbidities among adolescents with multiple 

mental disorders and compare the findings with relevant studies. The ablation 

experiment that removes one modal input each step and the fusion analysis that 

evaluates contribution ratio of each model from trained GAME parameters confirm the 

validity of the modal features and the interpretability of the multimodal fusion.  

In summary, this study develops a cost-effective and precise screening robot 

platform along with GAME to screen early mental illness among adolescents. A 

practical and adolescent-friendly mental health screening system with accurate and 

interpretable results will make it possible for CAS systems to be used in clinical settings. 

The theory-consistent comorbidity prediction demonstrate the GAME’s reliability for 

predicting comorbidity from data-driven perspective. GAME identifies the dominated 

feature for certain mental disorder and guides the screening design when single-modal 

data is available, which recommends the clinician pays attention to critical features and 

directs researchers to implicit patterns or theories found through a data perspective.  

 

https://www.iflyrec.com/


 

Figure 2. Pipeline of data processing and GAME’s structure. A total of 3,787 people participated 

in the mental health screening, retaining 968 samples after exclusion. Based on four types of input, 

GAME has been trained to predict mental disorders, mining comorbidity and correlation between 

multimodal features and mental disorders in adolescent. MediaPipe, Mel-

Frequency Cepstrum Coefficients (MFCC), Wav2vec2.0, Tsfresh module, pre-trained language 

models including Robustly Optimized BERT approach (RoBERTa), Pre-

training BERT with Permuted Language Model (PERT) are used to extract single-modal features 

from facial images, voice recording, physiological indicators, and textual transcripts respectively. 

The extracted features undergo task-level fusion, and then two cross-modal features are generated 

through unimodal features. Eight single-modal and two cross-modal features are fused by 

EmbraceNet. BERT means Bidirectional Encoder Representations from Transformers.  

 

Results 

Multimodal database construction 

We construct MAPS dataset with 3,787 Chinese middle school students aged 12 to 15 

and filter to 968 (Fig. 2 and Supplementary Method), encompassing four data 

modalities and 11 adolescent psychological disorders and overall mental health status. 

The 12 mental health conditions in the dataset have different distribution and the 

imbalanced positive-to-negative ratios (Fig. 1b), which are ranked from high to low as 

follows: obsessive-compulsive tendencies (6.56), interpersonal sensitivity (5.31), 

overall mental health status (4.90), academic stress (4.87), hostility (4.53), 

psychological imbalance (4.09), suicidal tendency (2.71), depression (2.44), emotional 

disturbance (2.25), anxiety (2.21), maladaptation (1.66), paranoid ideation (1.64). The 

subjects distribute across multi-centers and cities in Guangdong Province, China. 



MAPS collects comprehensive features via portable screening platform compared to 

the public mental disorder dataset. The IMAGEN study42 and the Adolescent Brain 

Cognitive Development Study (ABCD)43 are large multimodal adolescent mental 

health datasets, including MRI neuroimaging, behavior, cognition, etc. There are also 

private clinical datasets that have been used to train AI models for the diagnosis of 

specific adolescent psychiatric disorders. However, the current datasets are not 

compatible with portable screening for mental disorders due to high cost and complex 

data acquisition. MAPS uses an easily accessible and inexpensive data collection 

platform which can be scaled up for large population screening (Supplementary Table 

2). 

 

Attention mechanism and multimodal integration  

With extracted single-modal and cross-modal features, we compare reported machine 

learning (ML)44,45 models used for mental disorders diagnosis46-48, including Support 

Vector Machine with Polynomial Kernel (SVM-Poly) and Radial Basis Function 

(SVM-RBF) Kernel, Random Forest (RF), and Gradient-Boosting Decision Tree 

(GBDT) with GAME, to evaluate the prediction accuracy for 12 mental conditions and 

robustness of GAME. The performance and stability of the models are assessed using 

the evaluation metrics of accuracy and weighted F1-Score. Meanwhile, we implement 

the 10-fold stratified cross-validation (Fig. 1b) instead of the random split to evaluate 

the model’s performance. GAME averagely enhances the accuracy of 3.31% - 76.24% 

(SVM-RBF), 3.31% - 76.55% (SVM-Poly), 3.31% - 15.49% (RF), and 3.93% - 17.98% 

(GBDT) in comparison to the bracket’s baseline models (Table 2). In terms of model 

robustness, GAME enhances the weighted F1-score of the SVM-RBF, SVM-Poly, RF, 

and GBDT models by 5.07% - 83.31%, 6.57% - 83.94%, 6.34% - 23.78%, and 6.08% 

- 22.87%, respectively. The wide range of improvements in accuracy and F1-Score 

indicates the capability of GAME in mental disorders screening. 

 

Table 2 | Models evaluation and comparison for 12 different prediction tasks. 

Ground truth 
Evaluation 

metric 

SVM-

RBF 

SVM-

Poly 
RF GBDT GAME 

Overall mental 

health status 

Accuracy 

70.15% 

(84.30%, 

49.17%) 

64.99% 

(83.06%, 

30.68%) 

83.08% 

(84.40%, 

81.61%) 

82.23% 

(83.68%, 

80.99%) 

89.26% 

(92.78%, 

87.63%) 

F1-Score 

69.78% 

(79.47%, 

52.87% 

64.70% 

(79.49%, 

31.32%) 

76.82% 

(79.21%, 

75.37%) 

76.86% 

(79.09%, 

74.84%) 

87.49% 

(91.92%, 

85.42%) 

Depression 

Accuracy 

60.98% 

(74.38%, 

27.38%) 

59.38% 

(74.38%, 

31.50%) 

72.86% 

(73.45%, 

71.59%) 

71.30% 

(73.14%, 

69.94%) 

80.16% 

(82.47%,

78.13%) 

F1-Score 

56.87% 

(66.04%, 

12.49%) 

55.29% 

(66.97%, 

16.68%) 

63.35% 

(65.12%, 

61.89%) 

64.19% 

(66.32%, 

61.61%) 

76.80% 

(79.15%, 

74.00%) 

Interpersonal Accuracy 70.29% 66.16% 80.15% 79.07% 85.85% 



sensitivity (80.99%, 

56.42%) 

(80.37%, 

41.31%) 

(80.58%, 

79.03%) 

(80.27%, 

78.41%) 

(88.66%,

83.33%) 

F1-Score 

68.56% 

(75.28%, 

60.59%) 

64.68% 

(74.86%, 

42.94%) 

72.59% 

(74.26%, 

71.63%) 

72.88% 

(74.43%, 

71.12%) 

82.76%  

(86.72%, 

79.37%) 

Anxiety 

Accuracy 

57.04% 

(70.46%, 

31.20%) 

54.08% 

(70.56%, 

30.89%) 

68.38% 

(68.91%, 

66.84%) 

66.44% 

(67.98%, 

64.78%) 

77.58% 

(80.21%, 

75.26%) 

F1-Score 

52.01% 

(61.63%, 

15.53%) 

49.38% 

(62.42%, 

14.89%) 

58.21% 

(61.40%, 

56.47%) 

59.49% 

(61.81%, 

56.71%) 

74.83% 

(79.18%, 

72.08%) 

Obsessive-

compulsive 

tendencies 

Accuracy 

53.67% 

(63.95%, 

38.22%) 

51.68% 

(62.60%, 

37.91%) 

60.87% 

(62.71%, 

57.65%) 

59.25% 

(61.68%, 

55.90%) 

73.04% 

(76.04%, 

70.10%) 

F1-Score 

49.44% 

(58.00%, 

21.87%) 

46.41% 

(55.40%, 

21.21%) 

52.50% 

(56.97%, 

48.60%) 

54.89% 

(57.14%, 

51.63%) 

71.32% 

(75.17%, 

67.85%) 

Paranoid 

ideation 

Accuracy 

72.17% 

(82.95%, 

46.48%) 

64.69% 

(82.96%, 

31.20%) 

82.58% 

(83.06%, 

81.91%) 

81.38% 

(82.33%, 

80.57%) 

87.08% 

(88.66%, 

85.42%) 

F1-Score 

70.13% 

(78.28%, 

49.79%) 

63.74% 

(75.82%, 

32.21%) 

75.71% 

(76.59%, 

75.18%) 

75.74% 

(76.85%, 

74.48) 

83.59% 

(86.92%, 

80.33%) 

Hostility 

Accuracy 

70.95% 

(82.74%, 

51.13%) 

64.81% 

(82.13%, 

28.00%) 

81.47% 

(81.92%, 

80.37%) 

80.41% 

(81.20%, 

79.34%) 

86.78% 

(88.54%, 

84.38%) 

F1-Score 

69.21% 

(77.25%, 

55.57%) 

63.66% 

(76.93%, 

26.59%) 

74.24% 

(75.82%, 

73.37%) 

74.50% 

(75.90%, 

72.78%) 

83.54% 

(86.78%, 

78.88%) 

Academic 

stress 

Accuracy 

57.10% 

(64.88%, 

38.12%) 

54.67% 

(64.57%, 

37.91%) 

61.11% 

(63.64%, 

58.69%) 

59.53% 

(61.99%, 

56.20%) 

74.18% 

(81.25%, 

69.07%) 

F1-Score 

49.52% 

(57.32%, 

21.58%) 

47.82% 

(56.60%, 

21.15%) 

53.02% 

(56.13%, 

49.27%) 

54.98% 

(56.90%, 

50.19%) 

73.06% 

(80.46%, 

67.48%) 

Maladaptation 

Accuracy 

68.16% 

(86.36%, 

13.84%) 

62.79% 

(86.78%, 

13.53%) 

86.30% 

(86.78%, 

85.22%) 

84.83% 

(85.33%, 

83.99%) 

90.08% 

(91.67%, 

89.58%) 

F1-Score 

67.17% 

(82.58%, 

4.33%) 

62.77% 

(80.64%, 

3.71%) 

80.67% 

(81.31%, 

79.98%) 

80.32% 

(80.92%, 

79.83%) 

87.65% 

(89.77%, 

86.16%) 

Emotional 

disturbance 
Accuracy 

55.67% 

(70.35%, 

31.61%) 

53.06% 

(68.91%, 

31.30%) 

68.74% 

(70.56%, 

67.56%) 

66.61% 

(69.11%, 

63.85%) 

77.17% 

(80.41%, 

72.16%) 



F1-Score 

50.56% 

(62.67%, 

15.88%) 

48.23% 

(62.51%, 

15.23%) 

59.22% 

(62.43%, 

56.09%) 

59.70% 

(62.36%, 

56.34%) 

73.00% 

(77.92%, 

67.01%) 

Psychological 

imbalance 

Accuracy 

75.15% 

(89.46%, 

51.44%) 

70.49% 

(89.46%, 

26.96%) 

89.25% 

(89.46%, 

88.22%) 

88.25% 

(88.84%, 

86.88%) 

92.77% 

(94.79%,

91.75%) 

F1-Score 

76.19% 

(85.99%, 

60.09%) 

71.65% 

(84.49%, 

31.66%) 

84.44% 

(84.57%, 

84.13%) 

84.43% 

(84.98%, 

83.30%) 

91.06% 

(94.38%, 

89.18%) 

Suicidal 

tendency 

Accuracy 

68.45% 

(80.06%, 

46.77%) 

69.46% 

(79.96%, 

50.91%) 

79.53% 

(79.96%, 

78.20%) 

78.20% 

(79.34%, 

76.24%) 

85.43% 

(88.66%, 

83.51%) 

F1-Score 

65.71% 

(73.90%, 

46.34%) 

66.44% 

(72.58%, 

51.30%) 

71.27% 

(71.81%, 

70.85%) 

71.70% 

(73.48%, 

70.20%) 

82.20% 

(86.72%, 

78.27%) 

The outcomes of ML algorithms are the average values of single-modal features and cross-modal 

features, while the outputs of GAME are the average values assessed by the 10-fold stratified 

cross-validation method. Data in red denotes the highest value in the row, while data in blue 

denotes the row's next-highest value. The maximum and minimum values are denoted by the two-

tuple results in parentheses.  

 

Specially, we integrate the baseline outcomes of ML algorithms (Fig. 3) for 

contrasting them with GAME in terms of predicting performance for various forms of 

mental disorders. The results shows that GAME enhances accuracy by 5.8% - 52.78% 

(Depression), 4.86% - 44.54% (Interpersonal sensitivity), 7.02% - 46.70% (Anxiety), 

9.09% - 35.13% (Obsession-compulsive tendencies), 4.03% - 55.89% (Paranoid 

ideation), 4.03% - 58.78% (Hostility), 9.30% - 36.27% (Academic stress), 3.93% - 

76.55% (Maladaptation), 6.61% - 45.87% (Emotional disturbance), 3.31% - 65.81% 

(Psychological imbalance), 5.37% - 38.66% (Suicidal tendency), and 4.86% - 58.58% 

(Overall mental health status), while the weighted F1-Score of GAME is boosted by 

10.92% - 64.31% (Depression), 7.49% - 39.82% (Interpersonal sen sitivity), 13.68% - 

59.94% (Anxiety), 18.53% - 50.11% (Obsessive-compulsive tendencies), 7.95% - 

51.39% (Paranoid ideation), 6.29% - 56.95% (Hostility), 19.12% - 51.91% (Academic 

stress), 5.07% - 83.94% (Maladaptation), 11.75% - 57.77% (Emotional disturbance), 

6.57% - 59.40% (Psychological imbalance), 10.54% - 35.86% (Suicidal tendency), and 

8.28% - 56.17% (Overall mental health status), respectively. Furthermore, we employ 

the metrics of weighted precision, weighted recall, and the normalized confusion matrix 

to evaluate the performance of GAME across several classification tasks 

(Supplementary Fig. 10-12). GAME outperforms ML methods in both binary and 

multiple classification indicated by various metrics.  



 

Figure 3. Evaluation results of comparison between GAME and ML algorithms in various 

mental disorders. a, the results assessed by the accuracy in order to evaluate the performance of 

GAME and ML algorithms work in predicting various types of mental disorders, while the values 

of ML algorithms are incorporated in accordance with those distinct types of mental disorders. b, 

the results evaluated by weighted F1-score for purpose of measuring the robustness of models. 

 

Comorbidity among various mental disorders 

We use correlation analysis to evaluate the comorbidities and relevancy levels 

among different mental disorders in adolescents (Fig. 4a). The findings indicate that: 

(1) There is a comorbidity between depression and anxiety in young individuals; (2) 

Adolescents with anxiety are at a high risk of experiencing emotional disturbance; (3) 

Adolescents who suffer from depression and anxiety tend to experience elevated levels 

of high academic stress; (4) Adolescents with interpersonal sensitivity disorder are 

more prone to experiencing emotional disturbance, anxiety, depression, and academic 

stress, where anxiety and depression are more prevalent; (5) Teenagers with paranoid 

ideation are more susceptible to anxiety, obsessive-compulsive tendencies, and 

emotional disturbance; (6) Hostility and maladaptation are associated with higher levels 

of academic stress and psychological imbalance. There is a correlation between 

hostility and anxiety. (7) Emotional disturbance occurs at a high percentage, followed 

by academic stress and obsessive-compulsive tendencies. (8) Suicidal tendencies in 

adolescents may be influenced more easily by depression, anxiety, academic stress, and 

emotional disturbance. (Detail analysis is shown in Supplementary Results). Co-

morbidities or correlations among different mental disorders have been shown in 

published literature and clinical reports, which indicates our data-driven approaches 



reach similar conclusions as clinical evidence. 

In addition, we observe novel comorbidities via the prediction ability of GAME 

(Fig. 4b). The potential comorbidities are inferred from GAME prediction but are not 

revealed by correlation analysis, for example: (1) maladaptation and paranoid ideation 

are closely linked to psychological imbalance; (2) there is a comorbidity between 

paranoid ideation and hostility as well as maladaptation; (3) there is a comorbidities 

between suicidal tendency with interpersonal sensitivity and paranoid ideation; (4) 

emotional disturbance has a comorbidity with interpersonal sensitivity. (Further details 

in the Supplementary Results). A quantitative measure of the comorbidity between 

different mental disorders or complex interactions can be estimated with our method. 

The attention mechanism in this study employs the dual relationship in calculating the 

feature distance, which can be extended to multiple feature similarities when more data 

points are available later. 

 

 
Figure 4. Comorbidities among 11 different mental disorders in adolescents. a, the heat map 

reports the comorbidity association through data statistics. The value of color bar indicates the 

correlation ratio, which are calculated by the number of samples who are simultaneously suffering 

from two different mental disorders. b, the heat map shows the correlation of GAME predictions. 

The score of color bars is calculated based on the accuracy obtained from GAME with various 

model parameters trained by different mental disorders data, with higher accuracy indicating greater 

resemblance between the two mental disorder. Darker blue indicates poorer correlation while deeper 

red indicates higher correlation. 

 

Modality ablation experiments 

Each modal feature can boost the GAME’s accuracy in predicting various mental 

disorder (Fig. 5a). The impact of different modal features on the performance of GAME 

varies, with some exerting stronger influence than others, which facilitates GAME's 

ability to explain the individual modal’s contribution to certain mental disorders 

predictions. The modal features, ranked from highest to lowest in terms of their 

contribution to the model's accuracy, are as follows: Wav2vec, Expression, RoBERTa, 

Expression nuance, Relation graph, Eye movement, PERT, Attention, Physiological 

signs, and MFCC. The absence of specific modal features can result in a considerable 

decline in the prediction accuracy of GAME when predicting specific mental disorders, 



such as Attention features and obsessive-compulsive tendencies, Wav2vec features and 

emotional disturbance, expression features and academic stress. In terms of weighted 

F1-score (Fig. 5b), the average contribution of modal features to the robustness and 

stability of GAME is listed in descending order: Attention, RoBERTa, Expression, 

PERT, Eye movement, Wav2vec, Expression nuance, Physiological signs, Relation 

graph, and MFCC. Analogously, the removal of certain modal features can greatly 

diminish the robustness of GAME; for example, Expressions, Physiological signs, 

Wav2vec, Roberta, and Attention facilitate GAME’s stability in predicting anxiety. In 

addition, Attention and Wav2vec help GAME improve accuracy and robustness in the 

tasks of screening obsessive-compulsive tendencies and emotional disturbance. The 

results explainably demonstrate the ranking importance of various factors in mental 

disorder prediction. 

 

 
Figure 5. Ablation and contribution ratio for different modal features. a, the heat map shows 

the impact of modal feature elimination on prediction accuracy of GAME. The score of color bar 

indicates the percentage of accuracy decrease and the symbol ‘-’ represents decline. b, the influence 

on weighted F1-Score after removing certain modal feature of GAME. Deeper red denotes better 

correlation, while darker blue suggests lower correlation. These results reflect the relationship 

between mental disorders in adolescent and corresponding modal features utilized by GAME to 

predict these disorders. c, the line chart describes the contribution ratio of different features in 

various GAME prediction tasks, which provides the interpretation of the reasoning why GAME 

provides this screening decision.  

 

Modal feature contributions 



GAME indicates the dynamic contribution of each modal feature throughout the 

multimodal feature fusion to tailor the needs of different scenarios, implying that the 

same modal feature contribute differently to the prediction of different mental disorders 

(Fig. 5c). We find the following associations between mental disorders and their most 

important diagnostic features: Attention and Depression; Physiological signs and 

Interpersonal sensitivity; MFCC (i.e., voice recording) and Anxiety; PERT (i.e., textual 

transcripts) and Obsession-compulsive tendencies; Physiological signs and Paranoid 

ideation; RoBERTa (i.e., textual transcripts) and Hostility; RoBERTa and Academic 

stress; Eye movement and Maladaptation; Wav2vec (i.e., voice recording) and 

Emotional disturbance; Physiological signs and Psychological imbalance; RoBERTa 

and Suicidal tendency; as well as Eye movement and Overall mental health status. 

These findings explain the deterministic features utilized by GAME to make 

predictions for certain mental disorders, which are consistent with the screening 

methods used in previous work49,50 (Detailed analysis in Supplementary Results). 

Under resource- or time-limiting scenarios, the conclusion about important feature 

provides guidance for choosing the most valuable modality for certain mental disorder 

screening. 

 

Discussion 

CAS models for biomedical applications51 have experienced rapid development52-55 and 

multimodal learning has attracted attention for the screening and diagnosis of multiple 

diseases56,57. Nevertheless, the absence of screening hardware slows down the progress 

of CAS in psychology and restricts the creation of a generalized and interpretable 

multimodal CAS for screening adolescent mental disorders. To resolve this problem, 

we design and create an interactive robot with a well-designed Android APP to screen 

adolescent disorders unconsciously in a large population. Then we build a MAPS 

database and develop a generalized multimodal model, named as GAME, to predict 

adolescent mental disorders with high accuracy and stability. The integration of 

multiple feedback features is a promising predictor of psychological disorders in 

adolescents. 

The multimodal feature fusion and the attention mechanism boost the universality 

of GAME in the task of screening diverse mental disorders, where previous deep 

learning (DL)58,59 models are developed specifically for certain mental disorders60,61. 

GAME evaluates adolescent’s mental health conditions with an accuracy of 73.34% – 

92.77%, a F1-Score of 71.32% – 91.06%, a specificity of 73.24% – 93.14% and a 

sensitivity of 73.04% – 92.77%. Since other psychometric tools were reported to have 

~70% specificity 62,63, GAME is a more effective and powerful tool for screening 

adolescent mental disorders. Modality ablation shows that each modal feature provides 

a positive contribution in predicting performance. Notably, the absence of Attention 

leads to a ~10% reduction in model performance when predicting anxiety and 

obsession-compulsive tendencies. In a nutshell, GAME is superior to conventional ML 

algorithms and screening tools in prediction performance due to its thorough feature 

extraction and cross-modal information mining. 

Comorbidity is a common phenotype for those who have mental illnesses64. 



Adolescents with mental disorders require comorbidity analysis to create a precise  

psychological portrait. Comorbidities has clinical implications for the diagnosis of 

mental disorders, the prescription of appropriate treatments, and the long-term 

management65. However, to the best of our knowledge, few researchers utilize 

multimodal algorithms to mine comorbidities among adolescent psychological 

disorders. GAME can quantify the relevancy magnitude between different mental 

disorders in adolescents, which improves the accuracy of the mental disorders screening 

and provides insights for development of adolescent psychological theories through 

data-driven perspective. For example, GAME predicts a comorbidity between 

emotional disturbance and interpersonal sensitivity, shown in empirical research66, 

which indicates that unstable social relationships cause emotional disorders. GAME as 

a digital assistant to prompt the psychiatrist to give priority to the interpersonal 

sensitivity rather than emotional disturbance. The GAME can be extended to discover 

novel comorbidities if more modal features and mental disorder types are provided.  

Interpretability is crucial for the development and application of CAS systems in 

clinical settings. Unexplained or opaque models (known as "black boxes") make it 

difficult to understand the logic reasoning of clinical decision67. By dissecting the 

trained GAME’s parameters, we explain how GAME makes predictions through the 

contribution ratio for each modal feature during diverse prediction tasks, which 

uncovers the relationship between mental disorders and modal features through 

modality ablation. For example, GAME suggests that Physiological signs is more 

important than other modal features in predicting interpersonal sensitivity, which is 

consistent with the report that interpersonal sensitivity is associated with higher systolic 

blood pressure68. GAME guides future research directions through comorbidity 

relationships and correlation between features and mental disorders. For instance, 

GAME predicts that maladjustment and paranoid ideation are possibly linked to 

psychological imbalance. However, there is currently no relevant work to show the 

comorbidity between them, and future work is required to fill this gap. 

There are still limitations in this study. First, even that GAME has been validated, 

the size of the MAPS dataset is modest, which restricts the performance of data-driven 

models and necessitates the collection of larger samples to enable GAME to learn subtle 

features about adolescent mental disorders. Adolescents' mental disorders are closely 

related to their living environment69. In the future, we can enlarge the MAPS dataset to 

include more cities and countries with diverse economical stages, geographical 

environments, and social culture. Second, the materials of emotional stimuli may not 

be abundant enough. To improve the reliability of audiovisual stimuli70,71, emotionally 

elicited film clips should be included. Third, public multimodal datasets can be used to 

train GAME for widespread applications. However, multimodal datasets for screening 

of adolescent mental disorder are not available. Transfer learning with a pre-trained 

model can be adopted to extra psychometric applications instead of screening. Fourth, 

GAME can be used to tackle the issue of modalities absence, which has not been 

addressed in computational psychology. Real-world datasets often contain inadequate 

modality data for a variety of reasons, like data privacy, failed acquisitions, data 

corruption, and costly testing72. However, the missing modality problem has been 



studied in other diseases’ diagnosis73. 

In summary, this study demonstrates that a cheap (< $400), portable, interactive, 

expansible robot with vivid emotional stimulation materials can effectively facilitate 

screening and diagnosis of adolescent mental health disorders. GAME with  

theoretical support has the advantages of high accuracy, strong stability, and 

interpretability, which meets the needs of adolescents' mental disorder screening and 

unveil the relationship among various mental disorders as well as the correlation 

between mental disorders and modalities from a model-driven perspective. 

 

Methods 

The study was approved by the Office of Research Ethics of the Tsinghua University, 

Shenzhen International Graduate School protocol No.41 in 2021. 

 

Design of Android application 

The system of data transfer and the database management are developed based on 

Spring Boost 2.0, Spring Cloud, Mysql, VUE, Docker, Remote Dictionary Server 

(REDIS), and EQUEUE technologies, etc. There are two phases in the development of 

an Android application: screening protocol design and code development. Firstly, we 

collaborate and consult with professional psychologists, psychological counselor from 

middle school, and representative parents to identify the requirements and appropriate 

tools for adolescent mental disorders screening. Then, we formulate the interaction 

scheme and functional architecture of the application. Once we validate the engineering 

feasibility of the scheme and structure, we proceed with designing the user interface 

(UI) and user experience (UE). We follow the code development order of application 

(APP) client, application programming interface (API) server, and background database 

management system. In detail, we use Java and the front-end framework VUE for 

development of the application client, employ Restful API and Domain-driven Design 

(DDD) technologies for application API server development, and utilize REDIS and 

MySQL for background database management systems. Upon completing the 

application development, we conduct application program testing, including App 

content testing, App performance testing, App function testing, App visual testing, 

debugging, and repairing bugs. Finally, we deploy the application onto the interactive 

robot for on-site screening (Supplementary Fig. 1–9). The screening platform we 

develop provides objective and involuntary screening appropriate for repetitive 

screening, whereas questionnaire screening has a noticeable bias for recurrent screening. 

Also, the APP's content facilitates personalized further development, allowing 

researchers to tailor different stimulus materials and meet the various demands of 

psychological screening and diagnosis. 

 

MAPS Dataset Collection 

Our adolescent multimodal mental health screening dataset contains facial, textual, 

acoustic, and physiological data, four data modals, which are collected from multiple 

middle schools in Guangdong Province with 3783 volunteers ranging from 12 to 15 

years old and filtered to 968 after exclusion (Supplementary Methods). Each data is 



collected by a humanoid robot. The main components of this robot include a touch 

screen, a camera, a speaker, and a recording device. The touch screen displays the test 

content and allows interaction with the test taker. The camera records video of the 

volunteers' faces, and the recording device records the volunteers’ voices during the test. 

The recorded data is transferred to a configured personal computer for storage. An 

Android app installed in the robot system completes the entire testing and data 

collection process (Supplementary Methods). Personal information, such as gender, 

age, class number, and student ID, is required prior to data collection. The volunteer 

will enter all of the above information into the robot via the touch screen. The recorded 

video of the acquisition process and classroom environment is provided in the 

Supplementary Videos and Supplementary Fig. 13. 

 To minimize the physical and psychological discomfort experienced by adolescent 

participants during screening caused by a wearable device, we use a high-resolution 

camera installed in the robot to collect video data and calculate physiological signs by 

the rPPG algorithm integrated in the back-end server. The rPPG74 algorithm, coined as 

non-contact PPG75,76, is a technique to analyze the face video to extract physiological 

indicators, including heart rate, heart rate variability,  changes in blood pressure, and 

respiration rate. Stress and relaxation levels can be calculated using a DL algorithm and 

the arousal-valence emotion model77,78 based on physiological indicators. Eventually, 

we obtain six physiological metrics and save them in the database. The volunteer may 

move significantly during the screening process, potentially causing the rPPG 

algorithm to fail at deriving certain physiological indicators. Only the key and clear 

frames in the videos identified by the rPPG algorithm can be used to acquire the 

physiological indicators, and we save the pairs of face images and physiological signs 

to maintain a consistent correspondence between them. 

 

MMHI-60 

The MMHI-60 is adapted from the Symptom Checklist-90 (SCL-90)79, which was 

designed through a two-year follow-up survey on the mental problems of middle school 

students in more than 100 schools across China and has been successfully applied to 

the mental disorders screening for Chinese middle school students80. The MMHI-60 

consists of 60 questions to measure relevant symptoms of 10 distinct mental problems 

(including depression, interpersonal sensitivity, anxiety, obsessive-compulsive 

tendencies, paranoid ideation, hostility, academic stress, maladaptation, emotional 

disturbance, and psychological imbalance). For each question, the respondent assigns a 

score ranging from 1 to 5, depending on whether they have recently undergone a 

specific type of symptom or behavior, which represents none, mild, moderate, heavy, 

and serious, respectively.81. The MMHI-60 uses a 5-point Likert scale, where a score of 

2-2.99 indicates the presence of mild problematic symptoms; 3-3.99 suggests moderate 

symptoms; 4-4.99 indicates the presence of severe symptoms; and a rating of 5 denotes 

severe psychological symptoms. Final score is the average score of its corresponding 

questions, allowing the participants to be identified as having the potential for 

symptoms of a relative mental disorder. The mental health issue is recognized when the 

average score of the subscale is equal to or higher than 2, which will be regarded as 



positive. The ground truth of overall mental health status is obtained by combining all 

the scores from subscales (i.e., the higher the score, the worse the overall mental health 

status), and the ground truth of suicidal tendency is obtained by both the MMHI-60 and 

diagnostic advice from the psychiatrist. The question list of the MMHI-60 is presented 

in the Supplementary Methods. 

 

Theoretical Support 

This work relies on hyper-emotion theory, which supports GAME for the plausibility 

of predicting psychological conditions based on the magnitude of emotional responses 

to external stimuli within adolescents. Mental diseases originate with a cognitive 

appraisal that undergoes a chain of unconsciously transitions leading to a fundamental 

emotion, such as happy or angry. The hyper-emotion theory contains five principles: (1) 

The principle of unconscious transitions to fundamental emotions. People develop a 

series of unconsciously shifts from a physiological sensation or cognitive assessment 

to a fundamental emotion that is appropriate to the circumstance but aberrant in its 

response intensity. Such transitions lead to the start of a psychological illness, but they 

persist during the illness41. (2) The principle of no voluntary control. People are unable 

to control their basic emotions during straightforward cognitive assessments. (3) The 

ontological principle. The ontogeny of social mammals serves as the foundation for the 

development of basic emotions, as the source of psychological diseases. (4) The 

principle of vulnerability. The susceptibility of individuals to psychiatric diseases varies 

according to intrinsically established conditions and adverse circumstances. (5) The 

principle of inferential consequences. People pay more attention to an abnormal basic 

emotion, think about it, and try to identify its causes. They become skilled at making 

inferences about the topic they are pondering, and their inferences can perpetuate and 

worsen the mental illness. 

In brief, hyper-emotion theory endorses the notion that individuals occasionally 

perform cognitive assessments, which they may consciously recognize, resulting in an 

unconscious transition towards a fundamental emotion of heightened intensity. The 

episode may be brief or it may intensify into a full-fledged psychological disease, 

depending on individual constitutional and environmental factors. The theoretical 

foundation of this study is to allow teenagers to show their unconscious emotion 

perturbation to emotional stimuli from the interactive robot. 

 

Data Preprocessing 

To ensure that the feature vector dimensions entered into GAME are consistent, we 

preprocess the recording data as follows to ensure that the length of the recordings  is 

the same for all subjects. We set the valid recording duration to 10 seconds as the 

average length. If the recording length is longer than the average length, the excess 

frames will be truncated. If the recording length is less than the average length, it will 

be padded with zeros. Because the feature extractor can automatically solve the problem 

of length inconsistency (i.e., inconsistent length of text, face video, and physiological 

index), we do not need to perform a preprocessing step for the other data modalities.  

 



Single-modal Feature Extraction 

The purpose of feature extraction is to retain decent separability (e.g., help GAME 

classify data accurately) and reduce computing costs while mapping the sample from a 

high-dimensional feature space to a low-dimensional feature space. The followings are 

the algorithms used to extract single-modal features or cross-modal features. 

(1) Feature extraction for audio recordings 

Mel-scale Frequency Cepstral Coefficients (MFCC)82 is used as the feature of 

acoustic recordings that is commonly used in audio-related tasks like speech 

recognition and speaker recognition. An audio is subjected to a rapid Fourier transform, 

Mel filter bank, logarithmic operation, discrete offline transform, and dynamic feature 

extraction in order to acquire the MFCC feature. We obtain the MFCC feature extracted 

by speech-features-module (https://github.com/jameslyons/python_speech_features), 

which is a python package for audio signal processing and audio feature extraction.  

The calculation of MFCC can be divided into the following steps: first, frame the 

signal into brief frames. Under the premise that the audio signal doesn't vary 

substantially across small time scales, we confine the signal length into 25 ms, which 

is consistent with the acquisition frequency of 16 Khz, corresponding to 0.025 ∗

16000 = 400 frames. We set frame step as 10 ms (160 samples), which allows some 

overlap between steps. The first 400 sample frame starts at sample 0, the next 400 

sample frame starts at sample 160 etc. until the end of the speech file is reached. The 

second step is to calculate the power spectrum of each frame. One set of 12 MFCC 

coefficients is retrieved for each frame. Then, the Discrete Fourier Transform (DST) 

for each frame will be determined using the following formula: 

𝑆𝑖(𝑘) = ∑ 𝑠𝑖(𝑛)ℎ(𝑛)𝑒−𝑗2𝜋𝑘𝑛/𝑁𝑁
𝑛=1   1 ≤ 𝑘 ≤ 𝐾, 

where h(n) means the analysis window with N samples (i.e., hamming window) and 

K is the length of the DFT. Additionally, s(n) means time domain signal, whose i 

ranges over the number of frames. The 𝑆𝑖(k)  and 𝑃𝑖(k)  implies the time-domain 

frame and the power spectrum of frame i, respectively. Then, the periodogram-based 

power spectral estimate for the speech frame 𝑠𝑖(𝑛) is given below: 

𝑃𝑖(𝑘) =
1

𝑁
|𝑆𝑖(𝑘)|2. 

We square the output after taking the complex Fourier transform's absolute value. The 

next step is to calculate the Mel-spaced filter bank, take the log for each of the 26 output 

from previous step, and finally take DCT of the 26 log filter bank items to obtain 26 

cepstral coefficients. Consistent with traditional automatic speech recognition task 

settings, we keep the lower 13 of the 26 coefficients as the resulting features. 

In addition to the conventional speech recognition algorithm for feature extraction , 

we also employ the self-supervised pre-training DL model wav2vec 2.083 to embed the 

audio. In contrast to other models, wav2vec 2.0 performs the best in many standard 

voice tasks84. Thus, we employ wav2vec to extract features from audio recordings of 

adolescents. Wav2vec2.0 encodes speech audio using a multi-layer convolution neural 

network and subsequently masks portions of the latent speech representations. The 

model is trained using a contrastive manner in which the real latent is differentiated 

from fake latent. The latent representations are supplied to a Transformer85 network to 



produce contextualized representations. 

(2) Feature extraction for textual transcripts 

For text data, we use Robustly optimized BERT approach (RoBERTa)86 and  

PERT87 to extract the textual feature. The features produced by these two models varied 

because of the different architectures and the Chinese corpus used for training, so we 

employ the two models’ output as the inputs to improve the robustness and reliability 

of GAME in predicting adolescents’ mental disorders. RoBERTa and PERT are 

enhanced versions of BERT88, exhibiting capability in numerous tasks including text 

classification, machine reading comprehension, and text prediction. Based on pre-

trained models, we extract features directly without fine-tuning. RoBERTa is an 

improved BERT model that can match or exceed the performance of all post-BERT 

methods and provides a detailed evaluation of the impact of hyper-parameter tuning 

and change of training set size86. PERT is a permuted language model to recover the 

word orders from a disordered sentence, and the objective of PERT is to predict the 

position of the original word, which outperforms other BERT variants on a few tasks87. 

The use of PERT and RoBERTa can extract the features of text data from different 

perspectives.  

(3) Feature extraction for facial images 

The features of the face images are extracted using MediaPipe FaceMesh89. From 

a single image without depth information, MediaPipe FaceMesh can provide the 3D 

shape of a human face represented by 468 points with 3D coordinates. We use the pre-

trained model to generate the features of each image in the sequence, in which the face 

is resized to 256 × 256. The image will first be processed by a face detector to mark 

a rectangle area containing the face and landmarks such as eye centers and nose tips. 

Then the face rectangle is cropped, resized, and fed to a deep neural network to generate 

a vector of 3D landmark coordinates. 

Furthermore, we use MediaPipe Iris90 to track the eye movements of the volunteer. 

After MediaPipe FaceMesh detects the face area and eye landmarks, a DL model is 

trained to mark subtle positions such as iris position, eye contour, and pupil location. 

The position of each eye is represented by a pair of coordinates. Eye movement can be 

utilized to infer users' behavior and cognitive status in human-computer interaction91, 

since pupil response is closely related to cognitive and emotional processes92.  

(4) Feature extraction for physiological indicators 

Tsfresh93 is a Python package for extracting features from time series data, which 

employs 63 methods to obtain features, including absolute energy, the highest absolute 

value, etc. The Tsfresh module processes the time series data in three stages. The first 

phase is feature extraction, in which the algorithm characterizes the time series and 

generates aggregated time series features using the module of feature calculators. Each 

extracted feature vector is weighted according to its p-values to determine significance 

in achieving the desired outcome during the feature significance testing phase. The final 

phase is the multiple test procedure, which determines what features need to be 

retained94. The detailed implementation of feature extraction is described in 

Supplementary Methods. 

 



Z-Score Normalization 

After extracting the modal features from the individual modality data, we transform 

them using Z-score normalization to convert the feature vectors into a consistent spatial 

dimension. The following formula is used to determine the Z-score in statistics: 

Z = (x − μ)/σ  

where, Z means Z-score, x is the original value being evaluated, 𝜇 denotes the mean 

value of all data and σ implies the standard deviation. Cross-modal feature extraction 

and multimodal feature fusion are performed after Z-score normalization. 

 

Cross-modal Feature Extraction 

From eight single-modal features standardized by Z-score, we extract cross-modal 

features: Relation graph and Attention. Cross-modal features mine the relationship 

between various modal features, assisting GAME to use the correlation among modal 

features to predict a variety of mental disorders. The relationship graph is a weighted 

undirected graph where each node is a single-modal feature and the weight of an edge 

is determined by the distance between the linked node’s features. Since the length of 

different unimodal features varies, we apply the Dynamic Time Warping (DTW)95 

approach to compare the similarity between two time series of varying lengths or 

calculate the distance between them. Consequently, the relation graph has eight nodes 

in the vertex set and 32 weighted edges in the edge set, which will be represented in an 

8 × 8 adjacency matrix. 

 For the calculation process of DTW, suppose we need to measure the distance 

between two example series X = {𝑥1, 𝑥2, … , 𝑥𝑚}  and Y = {𝑦1, 𝑦2, … , 𝑦𝑛} . We set 

M(𝑋, 𝑌) as the m × n point-by-point distance matrix between sequences X and Y, 

where each point (i, j)  is distance calculated by 𝑀𝑖,𝑗 = (𝑎𝑖 − 𝑏𝑗)2  after the 

alignment between 𝑥𝑖  and 𝑦𝑗  due to length variation. The elements of X  and Y 

are mapped along a warping path P to minimize the distance between them and P is 

a group of index pairs that make up a matrix traversal, which is defined as: 

P = < (𝑒1, 𝑓1), (𝑒2, 𝑓2), … , (𝑒𝑠, 𝑓𝑠) > 

In order to avoid the problem of combinatorically explosive (i.e., examining every 

possible combination) , the following prerequisites must be satisfied for a warping path 

to be valid: (1) Boundary Condition: (𝑒1, 𝑓1) = (1,1)  and (𝑒𝑠, 𝑓𝑠) = (𝑚, 𝑛) , which 

guarantees that the warping path starts at the beginning of both series and terminates at 

the endpoints of them. (2) Monotonicity condition: 𝑒𝑖 ≤ 𝑒𝑖+1, 0 < 𝑖 ≤ 𝑚  and 𝑓𝑖 ≤

𝑓𝑖+1, 0 < 𝑖 ≤ 𝑛, which preserves the chronological sequence of points. (3) Continuity 

condition: 𝑒𝑖+1 − 𝑒𝑖 ≤ 1, 0 < 𝑖 ≤ 𝑚  and  𝑓𝑖+1 − 𝑓𝑖 ≤ 1, 0 < 𝑖 ≤ 𝑛 , which restricts 

the forward transitions to nearby points in next time-stage. We define dist(𝑋𝑥𝑖
, 𝑌𝑦𝑖

) be 

the distance between elements at point 𝑥𝑖 of sequence 𝑋 and 𝑦𝑖 of sequence 𝑌. As 

a consequence, the distance for optimal path P is equal to 

𝐷𝑃(𝑋𝑥𝑖
, 𝑌𝑦𝑖

) = dist(𝑋𝑥𝑖
, 𝑌𝑦𝑖

) + min {𝐷𝑃(𝑋𝑥𝑖−1
, 𝑌𝑦𝑖

), 𝐷𝑃(𝑋𝑥𝑖
, 𝑌𝑦𝑖−1

), 𝐷𝑃(𝑋𝑥𝑖−1
, 𝑌𝑦𝑖−1

)}. 



If we use Θ to represent the realm of all potential paths and 𝑃∗ is the shortest warping 

path. Hence, we can calculate the optimal warping path that 

𝑃∗ = (𝐷𝑃(𝑋, 𝑌))𝑃∈Θ
𝑚𝑖𝑛 .  

Let 𝑝𝑖 = 𝑀𝑋𝑒𝑖
,𝑌𝑓𝑖

 be the distance between elements at position 𝑒𝑖 belong to X and 

𝑓𝑖 of Y. The DTW distance between two series is obtained by the formula: 

𝐷𝑃∗(𝑋, 𝑌) = ∑ 𝑝𝑖
𝑠
𝑖=1 . 

An exact solution of the best route 𝑃∗ can be made using a dynamic programming 

approach. 

 With attention mechanism, the model can extract crucial feature, assign each input 

component a different weight, and reach more precise judgments. Similarly, we 

leverage the DTW method with attention weights, and the detailed process is described 

as the following. First, we select one of the single-modal features as the benchmark and 

use the DTW technique to determine the distance with the other remaining features. We 

use d𝑖 to denote the distance between any two single-modal features, 𝑑𝑖 = 𝐷𝑇𝑊(𝑀),

0 ≤ i ≤ 7, where M is the feature vector set with eight unimodal features. Second, we 

utilize the softmax function convert the distance set D = {𝑑𝑖}, 0 ≤ i ≤ 7 produced in 

the first step into a weight set W = {𝑤𝑖}, 0 ≤ i ≤ 7 to satisfy the requirements that 

∑ 𝑤𝑖 = 17
𝑖=0 . Third, the corresponding feature vector is weighted based on the weight 

set obtained in the second stage, and the outcome is then added in bitwise to the 

benchmark feature vector. The addition operation is based on the sequence 

correspondence in the DTW algorithm, and the dimensionality of the resulting feature 

vector is the same as the benchmark. Forth, repeat the same procedures using each of 

the eight single-modal features as the reference to generate eight new feature vectors, 

and then concatenate them as the attention modal feature. 

 

Multimodal Feature Fusion and Classification 

(1) Task-level feature fusion 

Here we use a simple strategy of averaging all feature vectors including text, audio, and 

the face landmarks. The average of eight sentence features is used to describe the 

overall features of the text modality, the average of five audio features is used to 

describe the features of the audio modality, and the average of multiple face landmarks 

is used to represent the face’s 3D shape feature. For the iris location in the face image, 

we use it directly without any preprocessing before multimodal fusion. 

(2) GAME 

GAME extracts eight unimodal features from four individual modality data and 

creates two novel cross-modal features based on the single-modal features. We then 

employ EmbraceNet38 as the backbone network of the multimodal feature fusion 

method, and the network structure of GAME is shown in Figure 2. EmbraceNet is a 

robust multimodal fusion model allowing for excellent compatibility with any network 

structure, which considers correlations between various modalities. Additionally, 

GAME can handle missing data. There are two main parts in EmbraceNet: the docking 

layers and the embracement layer. Docking layers convert the feature vector of a 

modality into a format suitable for integration, where the original feature vector is 



multiplied with parameter matrix and added by bias matrix. For example, suppose that 

there are m modal features extracted by corresponding network models, the output 

vector from the k𝑡ℎ network model will be called x(𝑘), where 1 ≤ k ≤ m. The i𝑡ℎ 

component of the input vector for the k𝑡ℎ docking layer is written as  

𝑧𝑖
(𝑘)

= 𝑤𝑖
(𝑘)

∙ 𝑥(𝑘) + 𝑏𝑖
(𝑘)

, 

where 𝑤𝑖
(𝑘)

 and 𝑏𝑖
(𝑘)

 are weight and bias vector that correspond to the k𝑡ℎ docking 

layer, respectively. Finally, the output 𝑑(𝑘) of the k𝑡ℎ docking layer is obtained by 

applying an activation function 𝑓𝑎 to 𝑧𝑖
(𝑘)

, i.e.,  

𝑑𝑖
(𝑘)

= 𝑓𝑎(𝑧𝑖
(𝑘)

). 

All the outputs of the docking layers are vectors with c dimensions, where the hyper-

parameter c (embracement size) can be configured if necessary (32 in GAME). 

In the embracement layer, the outputs of the docking layers are fused into a vector 

representing all modal information using a probability-based approach as follows. 

Consider 𝑟𝑖 = [𝑟𝑖
(1)

, 𝑟𝑖
(2)

, … , 𝑟𝑖
(𝑚)

]𝑇 , 1 ≤ i ≤ c is a vector obtained from a multinomial 

distribution, 𝑟𝑖 ~ multinomial(1, p) , where p = [𝑝1, 𝑝2, … 𝑝𝑚]  and ∑ 𝑝𝑘 = 1𝑚
𝑘=1  . 

Only one 𝑟𝑖  equals to 1 in accordance with the definition of the multinomial 

distribution, and all other values are equal to 0. The vector 𝑟(𝑘) = [𝑟1
(𝑘)

, 𝑟2
(𝑘)

, … 𝑟𝑐
(𝑘)

]𝑇 

is calculated with the output vector from docking layers 𝑑(𝑘) as  

𝑑′(𝑘) = [𝑑1
′(𝑘)

, 𝑑2
′(𝑘)

, … , 𝑑𝑐
′(𝑘)

]𝑇 = 𝑟(𝑘)°𝑑(𝑘), 

where ° means the Hadamard product, which will multiple the elements in bitwise (i.e., 

𝑑𝑖
′(𝑘)

= 𝑟𝑖
(𝑘)

∙ 𝑑𝑖
(𝑘)

). Ultimately, the i𝑡ℎ element of the output vector belonging to the 

embracement layer e = [𝑒1, 𝑒2, … , 𝑒𝑐]𝑇 is determined by the following formula: 𝑒𝑖 =

∑ 𝑑𝑖
′(𝑘)𝑚

𝑘=1 . The terminal network uses it as an input vector and outputs a final category 

label for the specified classification task. 

 

Experimental Evaluation Metrics 

In order to comprehensively evaluate the performance of GAME on imbalanced 

datasets, we implement a stratified k-fold cross-validation approach, where k is set as 

10. Accuracy, weighted F1-score, weighted Precision score, weighted Recall score, and 

normalized confusion matrix are calculated. The accuracy can be computed by the 

formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

The F1-score is calculated by Precision score and Recall score. The definitions of the 

weighted Precision score and weighted Recall score are listed as the following.  



𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =  
𝑇𝑃𝑖

𝑇𝑃𝑖  +  𝐹𝑃𝑖
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛weighted =  
∑ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖  ×  𝑤𝑖)

𝐿
𝑖=1

𝐿
 

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =  
𝑇𝑃𝑖

𝑇𝑃𝑖  +  𝐹𝑁𝑖
 

𝑅𝑒𝑐𝑎𝑙𝑙weighted =  
∑ (𝑅𝑒𝑐𝑎𝑙𝑙𝑖  ×  𝑤𝑖)

𝐿
𝑖=1

𝐿
 

𝑤𝑖 =  
𝑆𝑛𝑖

𝑇𝑛
  

where i depicts class index, L is the total class number, TP means True positive, 

TN is True negative, FP represents False negative, FN is False negative, Sn is 

sample number of specific class, and Tn is the total sample number. The weighted 

F1-Score can be determined as 

F1weighted =  2 ×  
Precisionweighted  ×  Recallweighted

Precisionweighted + Recallweighted
 

Normalized confusion matrix in cross validation is obtained by averaging each fold of 

the confusion matrix and then normalizing the output.  
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